Materials Science and Design for Germanium Monolithic Light Source on Silicon

نویسندگان

  • Yan Cai
  • Lionel C. Kimerling
  • Thomas Lord
  • Jurgen Michel
  • Gerbrand Ceder
چکیده

Germanium (Ge) is an optically active material with the advantages of Si-CMOS compatibility and monolithic integration. It has great potential to be used as the light emitter for Si photonics. Tensile strain and n-type doping are two key properties in Ge to achieve optical gain. This thesis mainly focuses on: (1) physical understandings of the threshold behavior of Ge-on-Si bulk laser and the temperature dependent performance; (2) process developments to grow and planarize the epitaxial Ge on Si in oxide trenches and corners; (3) introduction of n-type dopant into Ge-on-Si thin films while studying the threading dislocation behavior in n-Ge during annealing; (4) Design an external cavity Ge laser integrated with Si waveguides for a low threshold current and single mode operation. Heavy n-type doping was observed to change the Ge electronic band structure by band gap narrowing effect. We also found a failure of using a simple Drude model to explain free carrier absorption in n-Ge. We modified the optical gain simulation based on the above two observations in Ge. We found a broad gain bandwidth of ~ 200 nm from 1550 nm to 1750 nm and a higher net materials gain. We predicted a theoretical lasing threshold current density of 5~10 kA/cm in the bulk Ge laser device with the n-type doping of mid-10 cm at room temperature. We also predicted the Ge laser device would have better temperature stability regarding the threshold current compared to the III-V laser. Single crystalline Ge was epitaxial grown on Si in oxide trenches using ultra high vacuum chemical vapor deposition. The selective growth lead to the faceting in Ge because of the different growth rates of crystal orientations. We developed a suitable photolithography and oxide etch process to get the vertical oxide sidewall for Ge trench filling. We also tested the Ge growth in the T-shape corners to improve the reflectivity at the waveguide end. The T-shape structure was also useful for the Ge/Si waveguide coupling in the external cavity laser. Furthermore, we developed a chemical mechanical polishing (CMP) process for the over-grown Ge waveguides. The Ge CMP process was selective to oxide, flexible to change in the CMP rate by DI water dilution and controllable for a minimum dishing of Ge in the oxide trenches. N-type doping helped to increase the direct band transition in Ge for light emission. We developed a delta-doping method to grow a dopant source called “delta doping layer” on the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-temperature electroluminescence from germanium in an Al(0.3)Ga(0.7)As/Ge heterojunction light-emitting diode by Γ-valley transport.

Group-IV materials for monolithic integration with silicon optoelectronic systems are being extensively studied. As a part of efforts, light emission from germanium has been pursued with the objective of evolving germanium into an efficient light source for optical communication systems. In this study, we demonstrate room-temperature electroluminescence from germanium in an Al(0.3)Ga(0.7)As/Ge ...

متن کامل

Metal-optic cavity for a high efficiency sub-fF germanium photodiode on a silicon waveguide.

We propose two designs of nanoscale sub-fF germanium photodiodes which are efficiently integrated with silicon waveguides. The metal-optic cavities are simulated with the finite difference time domain method and optimized using critical coupling concepts. One design is for a metal semiconductor metal photodiode with <200 aF capacitance, 39% external quantum efficiency, and 0.588 (λ/n)³ cavity v...

متن کامل

Germanium-on-Silicon for Integrated Silicon Photonics

To meet the unprecedented demands for data transmission speed and bandwidth silicon integrated photonics that can generate, modulate, process and detect light signals is being developed. Integrated silicon photonics that can be built using existing CMOS fabrication facilities offers the tantalizing prospect of a scalable and cost-efficient solution to replace electrical interconnects. Silicon, ...

متن کامل

Enhanced light emission from improved homogeneity in biaxially suspended Germanium membranes from curvature optimization.

A silicon compatible light source is crucial to develop a fully monolithic silicon photonics platform. Strain engineering in suspended Germanium membranes has offered a potential route for such a light source. However, biaxial structures have suffered from poor optical properties due to unfavorable strain distributions. Using a novel geometric approach and finite element modelling (FEM) structu...

متن کامل

A Monolithic Ge-on-Si CMOS Imager for Short Wave Infrared

Introduction Imaging in the Short Wave Infrared (SWIR) band (1-2μm) enables a broad range of applications in medical and dental imaging, industrial inspection and night vision. The night sky emits substantially more light in this band than in the visible. The spectral response of silicon detectors is limited to λ < ~1μm. SWIR imagers have traditionally been built using arrays of compound semico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014